Dimension of quasicircles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension of Quasicircles

We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala’s conjecture that the Hausdorff dimension of a k-quasicircle is at most 1 + k. A homeomorphism φ of planar domains is called k-quasiconformal, if it belongs locally to the Sobolev class W 1 2 and its ...

متن کامل

Preprint Reference Dimension of quasicircles SMIRNOV , Stanislav

We introduce canonical antisymmetric quasiconformal maps, which minimize the quasiconformality constant among maps sending the unit circle to a given quasicircle. As an application we prove Astala's conjecture that the Hausdorff dimension of a $k$-quasicircle is

متن کامل

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

Quasicircles and the Conformal Group

We prove that a Jordan curve in the 2-sphere is a quasicircle if and only if the closure of its orbit under the action of the conformal group contains only points and Jordan curves.

متن کامل

Bounded Turning Circles Are Weak-quasicircles

We show that a metric Jordan curve Γ is bounded turning if and only if there exists a weak-quasisymmetric homeomorphism φ : S1 → Γ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 2010

ISSN: 0001-5962

DOI: 10.1007/s11511-010-0053-8